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An aortic-valve model is developed, having a quadratic cross-section, two rigid cusps 
and two wedge-shaped aortic sinuses. The flow through this valve is assumed to be 
one-dimensional, just as the flow behind the cusps should be one-dimensional. The 
resulting model equations are two nonlinear ordinary differential equations of second 
order for the valve opening area as a function of time in two different ranges. 

This model allows the size of the aortic sinus to be varied; it also permits a 
computation of the pressure at both sides of the cusps (unlike previous models of this 
kind, which consider the flow behind the cusps as stagnant). The computed valve 
motion due to this pressure difference is in good agreement with experimental results, 
although no vortex with circular streamlines is postulated in the aortic sinuses. 
Obviously such vortices trapped in the sinuses are not important for the valve closure, 
which is controlled solely by the flow deceleration. 

1. Introduction 
The aortic valve controls the flow of oxygenated blood from the left ventricle into 

the aorta. It is a non-return valve, which works very efficiently. 
During the first part of the ventricular systole the three cusps in the valve open 

promptly with the rapidly ejected blood. However, in the second part of the systole 
the cusps are already driven towards their closure position, even though the flow is 
still forward; 7 5 8 0 %  of the closure is already completed before the aortic flow 
becomes zero. Only a very small reversed flow of about 2 4 %  of the total forward 
flow then completes the closure by sealing the valve. 

In the last fifteen years, beginning with the pioneering work by Bellhouse & Talbot 
(1969), numerous investigators have been attracted by the problem of how to explain 
the pressure difference across the cusp which moves the cusp into the forward flow. 

One explanation goes back to Leonardo da Vinci (1513). He found in his anatomical 
studies three marked dilatations of the root of the aorta, called aortic sinuses or 
sinuses of Valsalva, one sinus behind each cusp of the valve. Leonardo predicted that 
vortices would be formed in the sinuses and that they would feature in the control 
mechanism of the valve. 

Almost four hundred years later an alternative explanation of valve closure was 
given by two physiologists (Henderson & Johnson 1912). According to these authors, 
the deceleration of the aortic flow is mainly responsible for the cusp’s movement into 
the forward flow; they themselves called it the ‘breaking of the jet ’. 

Leonardo’s prediction stimulated a number of experiments with physical models 
to study the dynamics of natural heart valves, aortic as well as mitral ones (e.g. 
Bellhouse 1969,1972; Bellhouse & Talbot 1969; van Steenhoven & van Dongen 1979; 
Lee & Talbot 1979; van Steenhoven et al. 1980). Most of these authors have also put 
their experimental findings into a theory ; see for instance Bellhouse & Talbot (1969), 
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who model the fluid motion in the sinus for the peak-flow period with the aid of a 
modified Hill vortex. 

It has been concluded from the earliest of these experiments and theories (e.g. 
Bellhouse 1969) that the fluid vortex trapped within each sinus plays an essential 
role in the early phase of valve closure (Hwang 1977), that the vortices help to 
position the cusps at peak systole and that the vortices contribute to the prevention 
of jet formation from the narrowing valve opening. 

However, an explanation of valve closure that relies solely on the thrust of vortices 
trapped in the sinuses is incomplete (Bellhouse 1980) - the flow deceleration is needed 
too. Lee & Talbot (1979) state that the adverse pressure gradient related to the 
deceleration of the valve flow is the primary mechanism for efficient valve closure. 
Also, van Steenhoven & van Dongen (1979) concluded from their experiments that 
a vortex trapped in the sinus does not essentially affect the mechanism of valve 
operation; however, it must be noted that the flow deceleration in their experiments 
starts from the steady state. 

In  this paper an attempt is made to show that the closing of the aortic valve will 
function correctly also without any control by vortices trapped in the sinuses and 
without additional thrust by such vortices to aid closure in the latter part of systole. 
For this purpose the fluid in the sinuses is not considered stagnant as in the above- 
mentioned earlier theories, but the pressure at the sinus side of the cusps is computed 
from displacement of fluid in the valve opening and replacement during valve closure. 
Moreover, the use of a one-dimensional model will prohibit the formation of a vortex 
with circular streamlines in the sinuses. 

2. Short description of the natural aortic valve 
The natural aortic valve consists of three equal-sized crescent-shaped (or semilunar) 

cusps, each of which is supported at its base by a near-cylindrical cuff, the human 
aortic root having an inside diameter of approximately 25 mm. The cusps are 
non-muscular and 0.2-0.4 mm thick, they are reinforced with collagen strands 
running from commissure to commissure. The cusps are passive devices which ‘float ’ 
in the blood stream. 

In the closed phase (ventricular diastole) the free margins of the leaflets come 
together and seal each other when the left ventricular pressure falls below aortic 
pressure; then the cusps have to support a pressure difference of about 100 mmHg 
(13.3 kPa). The bottom surface angle a (see figure 1, left-hand side) is about 20’ in 
the closed phase (Swanson & Clark 1974). 

As Davila (1961) showed photographically, the aortic leaflets do not actually open 
fully in systole because of the enlargement of the circular orifice by aortic distension. 
The opened leaflets lie as three cords within the circle, forming a triangular orifice. 

However, Bellhouse & Talbot (1969) showed in an experiment with a rigid-walled 
model that aortic leaflets do open fully during systole and provide almost no obstacle 
to the blood flow. Bellhouse (1969) concluded from his experiments (for a steady flow) 
that the downstream edges of the cusps can project into the sinus cavities by 9.1 % 
of the aortic radius. 

Three permanent dilatations of the aorta, matching each cusp, are called aortic 
sinuses or sinuses of Valsalva after the Italian anatomist who published in 1740 the 
first anatomical account of the aortic sinuses. The size and shape of the sinuses can 
be seen in the left part of figure 1, where all lengths are non-dimensionalized by the 
radius r,, of the aorta at its root. 

From two of these three sinuses spring the coronary arteries, which supply 
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FIGURE 1. The size of the aortic valve (cross-eectional). Left-hand side: natural valve. Right-hand 

side: model valve. The asterisk indicates non-dimensionalization by ro or b. 

oxygenated blood to the heart muscle. It may be one function of the vortices within 
the sinuses to avoid a sealing of these orifices by the leaflets protruding into the sinus 
cavities, when the valve is fully open. 

The aorta itself and the sinuses vary in diameter, and the leaflets vary in length, 
as the pressure varies during a cardiac cycle (see Swanson & Clark 1974). However, 
these variations are very small indeed and can be neglected in the following 
considerations. 

3. The valve model 
The model aorta has a quadratic transverse section, the size of which is A, = 4b2 

(see figures 1 and 2). 
Instead of three cusps in the natural valve, there are only two rectangular ones 

in the model; they are trap-like, each one being supported by a rule-joint on the side 
of the aorta opposite to the other trap. These model cusps are assumed to be rigid 
and to have zero mass. The size of such a ‘cusp’ equals 2bL. The cusp length L 
determines the bottom angle acL (see figure 1, right-hand side). This should 
correspond roughly to the angle that is made between the cross-sectional plane and 
the plane of the cusp (in closed position), i.e. about 35O. The corresponding length 
L in the natural valve will be larger by about 15 yo when the cusp is stretched. The 
notation b/L = k is frequently used. 
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X 

FIGURE 2. Symbols used in the valve model. 

The model is a one-dimensional one : the only coordinate is along the x-axis of the 
aorta. The flow has a u-component only, i.e. it  is considered to be homogeneous across 
the valve. This may be justified at least partially by the findings of other authors, 
that the flow is laminar, the profile is flat and does not show a central jet (Bellhouse 
& Talbot 1969; Bellhouse 1980). 

The cross-sectional area of the valve between the cusps is 

X 
A(x,  t )  = A, { 1 - [l - A @ ) ]  -}, 

XL 

where XL = L{ 1 - k2[ 1 - A(t)]2}4 (2) 

is the x-coordinate of the moving distal margin of the cusp. The meaning of the 
symbols can be seen from figure 2. 

xL = L when the valve is fully open and xL = xcL is the closed position: 

XCL = L{ 1 - k2}4, (3) 

(4) 

is the single degree of freedom of this model valve; A is called the (relative) 
valve-opening area. 

If A = 0.5, xL = xh, where 
xh = L ( 1  -ik2}4, 

an expression that is needed later on. 
The other existing theories differ primarily in the assumption about the fluid behind 

the valve leaflets. Either the flow over there is modelled by a Hill spherical vortex 
and matched to the main stream (e.g. Bellhouse t Talbot 1969) or the pressure in 
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the aortic sinuses is assumed to be uniform and equal to the pressure a t  the cusp 
margins. 

In  the present model the Auid behind :he cgsps is displaced in valve opening and 
moved backward in valve closing. This Ihotion'(assumed to be one-dimensional too) 
is computed from the continuity condikion and allows the pressure p ( s )  along the 
reverse side of the cusp to be obtained. L 

Therefore one has to distinguish the flow inside the cusps (suffix i )  from the flow 
behind the cusps, i.e. on their sinus side (suffix a); the same is applicable to the 
sectional area A(x, t )  : 

ui Ai + u,[(A,-A,) + A,] = u, A,. (6) 

A, is the sectional area of the sinus of Valsalva; its maximum A,(L) is determined 
by the semicircles drawn from the centre of each side of a triangle inscribed into the 
circular aorta. One finds for A,(L) 

The assumption of a wedge-shaped aortic sinus ineans that this area increases linearly 
with increasing distance x from the valve orifice : 

(7) 
X 

A,(x) = 0.539m - A, ( X  < L).  L -  
Of course, A, has its maximum at x = L, but not at x x $L as in nature (see figure 1, 
left-hand side). The shape and size of the sinus for x > L do not matter in the case 
of such a one-dimensional model. The factor h in (7) allows for a variation of the 
size of the aortic sinus; m = 1 gives the natural maximal size at x = L. 

Undoubtedly there are several other more sophisticated models having fewer 
restrictions (e.g. Peskin 1972; McCracken & Peskin 1980; Hung & Schuessler 1977), 
but these seem to be less suitable for the purpose of this paper. 

4. The basic equations 
We start with almost the same set of equations as applied by Peskin (1982) in his 

review paper when he describes the motion of valves with a single degree of freedom. 
The equations are 

@ a )  
X 

1 - [l- h(tj] - 
X L ( t )  

X 
A,(x, t )  = A, { [l - A ( t ) ]  x t O . 5 4 m  :}, 

L( 1 
a a a a .  
at ax at ax 
- A  +- (Aiui) = 0 ,  * -A,+-  (A,u,) = 0, 

p - U , + ~ - u , ) * - p ,  a a = 0. 

p -u,+u,-u,  + - p p , = o ,  
C t  ax 

G t  ax ax 

1 :x a 

(11)  
J2 J S(P&(S, t )  -p,(s, t ) }  ds = 0, S = L -. 

0 XL 
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In these equations u is the axial velocity, p is the pressure, A is the cross-sectional 
area of the valve, L is the length of the cusps and A( t )  is the single degree of freedom. 
This A ( t )  is the (relative) valve opening area as defined in (4). s is the coordinate along 
the cusp (see figure 2) and m is a factor taking account of enlargement or reduction 
of the size of the aortic sinus. 

Equations (8a, b) are an expression of the geometry of the planar model (see ( l ) ,  
(6), (7)) ,  whereas (9a), (10a) and ( 9 b ) ,  (lob) are the one-dimensional forms of the 
incompressible Euler equations. The cusps are assumed to have zero mass, thus the 
torque acting on a cusp must vanish. That is expressed by (11). Other authors (e.g. 
van Steenhoven & van Dongen 1979; Peskin 1982) postulate that only the acting 
forces have to balance; this causes slight differences in the results. 

With (2), (8a)-(11) a set of eight nonlinear equations is available for the eight 
variables A,, Ai, u,, ui, pa, p i ,  xL and A ;  they all depend on x and t, except for xL 
and A ,  which depend on t only. This set of equations can be solved only by a 
simultaneous numerical integration. 

However, when allowance is made for some approximative simplifications, seven 
of the eight variables can be eliminated, yielding a single equation for the valve-opening 
area A ;  this will be an ordinary differential equation for A ( t )  in terms of the velocity 
at the orifice uo(t) = u(0, t ) .  

The abovementioned approximations imply that such a differential equation can 
be derived only for a certain rather short period of time, e.g. for times when A x 1. 
Here the derivation should be restricted to three such short periods, namely to times 
when A x 1,  A x 0.5 and A x 0. However, afterwards the three differential equations 
thus obtained, valid only for three special times, will be combined again by a kind 
of matching in order to have an equation also for the intermediate times when 
1 > A > 0.5 or 0.5 > A > 0 respectively. The first step follows partly from the work 
of van Steenhoven & van Dongen ( 1979), who carried out the derivation approximately 
for times when A x 1. Owing to these approximations, the derived differential 
equation remains a linear one. 

These approximations can be achieved by setting A = A, + dl (A, = 1, 0.5 or 0) 
and then retaining only terms up to first order in 8. The linearizations thus achieved 
are as in table 1. 

A2 

(1-A)2 
(1 - 4 3  

dA 
A -  

dt 

dA 
(1-A)- 

dt 
dA 
dt 

(1-A)Z-  

A, = 1 

2A-1 

0 
0 

dA 
dt 
- 

0 

0 

L 

A, = 4 
A - a  
t -  1 

1-3A 

1 dA 
2 dt 
1 dA 
2 dt 
1 dA 
4 dt 

1 4  

_ _  

_ _  

_ _  

Z h  = L( 1 -*k*)k 

TABLE 1 

A, = o  
0 

1 -2h 
1 -3A 

0 

dA 
dt 
dA 
dt 

- 

- 

X C L  = L( 1 - k2)f 
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5.1. Derivation of the A-equation for times when h x 1 
By substituting (8a) into (9a) and (8b) into (9b) and integrating once in z, one gets 
expressions for ui(z, t) or u,(x, t )  respectively, both in terms of A(t) : 

(124 
z d h L  z2 

u,(z,t) = uo+(l-A)u ----- dt 2 L2 (O < < xL L),  OL 

u,(z, t)  = - - 2L - 
dt N L '  

N = 4(0.52m+ 1 -A).  

Now (12a) can be substituted into (10a) and (12b) into (lob) respectively, and on 
integrating once again in 2 one obtains expressions for pi(", t )  and pa(", t)  respectively, 
in terms of A(t) : 

1 1 
P P dt -pi(& t)-- pi(o, t)  = -{ (1 - A )  

1 1 d2A L2 
P P dte N 
- pa(", t) = - p,(L, t) +- - (1 -$) 

The boundary condition for the last integration is ua(O, t)  = 0. Of course, the condition 
pa(zL, t)  = pi(zL, t)  must be taken into account. 

For N+co (i.e. m+m, the size of the aortic sinus approaches infinity) 

p,(z) = pi@) = const., 

which is the assumption made by several authors for the pressure at the sinus side 
of the cusp. 

Substituting (13a, b) into (11) yields the following ordinary differential equation : 

1 where 
f - U "  - 
- L Ml(m)' 

16 1 f =A_-+->-- u210 l d u  {Ifzm}, 
L2 3 Ml(m) L dt 2M1(m) 

u;lO 1 1 d A  1 5  16 1 10 
f +- - - {- (1 +- -) +T} 9 ' - L2 3 Ml(m) L dt M,(m) 2 3 2.16m 

5 
2 . 1 6 ~ ~ '  

M1= 1+- 

Equation (14) is very similar to that obtained by van Steenhoven & van Dongen 
(1979) or by Peskin (1982); their assumption pa(", t)  = p,(z, ,  t) x pi(L, t )  requires 
m+oO or Ml = 1. With that, (14) reads 

1 duo 
dA } L dt '4. 

d2A dAu, 
dt2 dt L {$ L d t  
-+--cl-(l-A) - c  + - - c 3  =-- 

The coefficients cl, . . ., c4 in this equation should be compared with those in the 
equations of van Steenhoven & van Dongen and Peskin; see table 2. 
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c1 C2 c3 c4 

Equation (14), m + o ~  5 Y t Y 
van Steenhoven & van Dongen je 4 Q 4 
Peskin Y 4 B 2 

TABLE 2 

The slight differences in the coefficients cl, . . . , c4 are due to  the use of the torque 
in (11)  instead of the forces as were used by van Steenhoven 6 van Dongen as well 
as by Peskin. The difference in c,, between the latter two is explained by the different 
model geometry (planar model in van Steenhoven & van Dongen, a truncated cone 
model in Peskin, for which the valve-opening area A J A ,  = A2) .  Nevertheless, one 
gets the impression that the type of equation is more or less invariant for modifications 
of the model. Computations with a three-cusp model and a hexagonal model with 
six cusps (both with a star-shaped cross-sectional area of the valve) yield the same 
type of equation. 

For a non-pulsatile flow the valve has a stable equilibrium configuration given by 
h = 1.  When duo/dt < 0 the cusps are driven towards the closing position even though 
uo is still positive. This shows the importance of deceleration in closing the valve. 

5.2. Derivation of the h-equation for times when h x 0.5 
The derivation is analogous to that in 55.1. By substituting (8a)  into (9a)  and ( 8 b )  
into ( 9 b )  and integrating once in x (using the linearizations in A for A, = 0.5) one 
obtains again the expressions for ui(x,  t) and u,(x, t ) ,  both in terms of A@) : 

X d h x h  x 
U i ( X , t )  = u o + ( l - h ) u o - - - -  dA xh (")' - --- dt (xj - (0 < x < xL x xh), (15a) dt 2 xh 

dA2xh x 
u , ( x , t )  = 

dt N xh 

After this, (15a) is substituted into (10a) and (15b) into ( l o b ) .  Integrating once 
again in a, one obtains expressions for p i ( x ,  t )  and p,(x,  t )  respectively, in t e r m  of 

dh xh d2h X k  + -uo-+--  

d2A x i  

{ dt 2 dt2 6 1 (Ey 
+ {$ - u o - + - -  2 dt2 16}(Ey'  

The boundary conditions at x = 0 for the integrations are ui = uo and u, = 0. Of 
course, the condition p,(x,, t )  = p i ( x L ,  t)  is also used. Nh = 4(0.52mxh/L+ 1 - A ) ,  
where N is defined in (12b). 



Fluid dynamics of the aortic valve 495 

Again, for N,+m (i.e. m+m, the size of  the aortic sinus approaches infinity) the 
pressure at the sinus side of the cusps is uniform and equals the pressure at the distal 
end of the cusps. 

Substituting (16a, b) into (1 1) yields the following differential equation: 

d2h dA 
dt2 dt 
-++I -+&A = g3r 

where 

{2.16( 1 -ak2)t m + P(g- k2) ($+ k2)-l}, 
1 

X 
M,(k m) 

M2(k, m) = 2.16(1 -ak2)tm+F. 

Throughout the calculations in this subsection h = 0.5 + €Al, and only terms up to 
first order in E are retained, i.e. the linearizations in h according to table 1, A, = 0.5, 
are used. 

5.3. Derivation of the h-equation for times when h x 0 
By substituting (8a) into (9a) and integrating once in x, one obtains the velocity ui 
in terms of h(t): L d A x 2  

(l-k2)! dt (z) ’ (18) 

where the linearizations in h for A, = 0 (see table 1)  are used, and 1 - A  x 1 is taken 
in the denominator; also a mean value of x (0 < z < xL x zcL), F+~X,. ,  has been used 
in the denominator. This expression differs considerably from that obtained by Lee 
& Talbot (1979), who made the assumption aui/ax = 0 for h x 0; they justified this 
by an indirect consideration of the frictional effects. These authors obtained a 
first-order differential equation for h instead of the second-order differential 
equation (20). One substitutes (18) into (lOa), integrates once in 2 and obtains the 
pressure p,(x, t)  in terms of h(t) : 

Ui(X, t )  = 2uo-- - 

1 1 du x 2Lu0 dh x L2 d2A x 
P P dt L (1-k2)% dt (z) +3( l -k2 ) !p (z )  ‘ 
- p,(x, t) = - Pi(0, t) - #u; - 2L 2 - + 7 - 
For A x 0, i.e. for the early opening or the final closing, the motion of the cusps 

is almost independent of the size of the aortic sinus. Therefore the pressure pa  on the 
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back of the cusp can be assumed to be uniform and equal to the pressure at the cusp’s 
margin : 

Now (19a, b) are substituted into (1 1 )  ; this yields the following ordinary differential 

d2A dA equation : 

-+h, dt2 -+h,h dt = h3, (20) 

U 
h, = 2 5(1 -k2)-f, 

L 

h, = 0, 

5.4. Thejnal differential equation for h(t) 

The three h-equations (14), (17) and (20) obtained above are valid only for times when 
h x A,  and A, has special values: 

(14) for A,  = 1 

(17) for A, = 0.5 

(20) for A, = 0 

d2A dA 
Z+fl  &+fd = f 3 9  

d2A dh 
dt2 dt 
-+gl -+&A = 93, 

d2h dh 
dt2 dt 
-++, -+h,h = h3. 

Now (21a,b) are fitted together by a weighted average in order to obtain a 
differential equation for h(t) valid in the range 1 > h > 0.5; the same is done with 
(21 b,c),  giving a differential equation for h(t) valid in the range 0.5 > A > 0. The 
chosen weighting functions, depending on A ,  must guarantee that for A = 1,  0.5, 0 
the equations reduce to (21 a, b, c) respectively. For this purpose thef, are multiplied 
by 2h- 1, the gi by 2( 1 - A )  for 1 > h > 0.5 and by 2h for 0.5 > h > 0, and the hi 
am multiplied by 1 - 2h. 

Of course by applying such a weighted average the equations become nonlinear 
again; however, a single ordinary differential equation is left instead of the set of eight 
coupled partial differential equations (2), (8)-(11), which are also nonlinear. An 
insight into the mechanism of valve motion can be gained more easily with the aid 
of the single equation for the valve-opening area A than with the complete set of 
equations; especially because the single equation shows the way in which h depends 
on L, m and uo(t). 

1 > h > 0.5 

The resulting equations are as follows : 

d2h dA dt2 +& { A  2(f, -91) + 29, -fJ + A2 Vf, -g2) + 2(g, + Q3 - i f 2  - f 3 )  = 2g3 - f 3 ,  

(22a) 
0.5 > h > 0 
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The coefficients f,, f,, f3 depend on uo(t) ,  L, m ;  they are given in (14). The coefficients 
gl, g2, g3 depend on uo(t) ,  L, m, k ,  and the coefficients h,, h,, h, depend on uo(t), L 
and k ;  they are given in (17) and (20) respectively. 

(23 1 
dh 
dt 

The initial conditions are 
h = 0 ,  - = o  ( t = O ) .  

After a discretization of (22a, b) and (23), the simple Euler method is applied for 
numerical integration; the appropriate time step is At = 1 ms. 

6. Discussion of the results 
A numerical integration of (22a, b) with initial condition (23) has been carried out 

for a valve with b = 1.10 cm, L = 1.34 cm (i.e. a, = 35O, k = 0.82, A, = 4.84 cm2, 
corresponding to an inside diameter of a circular aorta of 2.48 cm) and an aortic orifice 
velocity u,(t)  as given in figure 3 by the solid line. During a period of rapid ejection 
of 0.1 s this velocity increases to a peak value of 90.8 cm/s and then decreases again 
during the following 0.16 s; after 0.26 s the flow equals zero again. 

With the following diastole of 0.60 s (including a very short period for the final valve 
closure by backflow) the duration of one beat is 0.86 s, or the beat rate is 70 min-'. 
This means, with the velocity uo(t)  according to figure 3, that the stroke volume 
V = 5 1 min-', which are quite natural conditions in non-exercising humans. 

The motion of the cusps is shown in figure 4 for three different sizes of the aortic 
sinus, m = 1.6 (solid curve) corresponds to the natural size, m = 0.83 (dotted curve) 
to half the natural size, and m = a to a size approximating infinity. As mentioned 
earlier, the latter case is identical with the condition p,(z,  t )  = pi(zL, t ) ,  which is used 
by almost all other authors for the pressure p,(z,  t )  at the sinus side of the cusp. 

According to (7), the natural size of the sinus of Valsalva is given in the model for 
m = 1, x = L with A, = 0.54A0. However, form = 1.6 this size is reached already for 
z = 0.6L, the distance from the orifice at which the natural sinus is largest. 

Let us consider the natural case (m = 1.6) : The valve opens very fast when rapid 
ejection begins, the cusps are already parallel to the aortic walls ( A  = 1)  after 65 ms 
of systolic time and reach maximum opening with h = 1.08 after 89 ms, i.e. already 
11 ms before the time when u, is maximum. Then the cusps remain more or less in 
this open position until the time (100 ma) when deceleration begins; then they start 
closing. After 129 ms they are again parallel to the aortic walls, then they close 
further. At zero velocity (260 ms) the cusps have swept three-quarters shut, which 
is in agreement with the findings of Bellhouse & Talbot (1969) and Bellhouse (1969) 
for pulsatile flow. 

The valve-opening area is larger than 1 for about 64ms, with a maximum of 
A,,, = 1.08. This agrees quite well with the experimental results (steady state) of 
Bellhouse (1969), where the downstream edges of the cusps project into the sinus 
cavities for 9.1 % of the aortic radius. 

If the sinus in the model has only half the size of the natural one (m = 0.83, dotted 
curve in figure 4) the valve opens even wider, the downstream edges of the cusps 
project info the sinus for about 12 % of the half-diameter b. Although the cusps begin 
closing already after 82 ms of systolic time; the valve remains 44% open when the 
orifice velocity is zero again, which is not realistic. 

In  the case m-ta the time of maximum valve opening (A = 1.02) coincides with 
the time of peak velocity u,; however, in the second phase of systole the valve closes 
too fast; the open area at the time 260 ms (u, = 0) is h = 0.03 only, which is quite 
unrealistic. 
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FIQURE 3. Time-dependent aortic orifice velocity: -, natural conditions; * * . * a ,  a quadratic 
function of time for the purpose of comparison with experiments. 
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FIQURE 4. Time-dependent aortic-valve motion for different sizes of the sinus of Valsalva: -, 
m = l.e, natural size; ---, m + a ,  size approaching infinity; * . . a ,  m = 0.83, half the natural size. 

In figure 5 the theoretical result (solid curve) is compared with experimental data 
(0) obtained by Bellhouse t Talbot (1969) in experiments with a symmetric pulsatile 
flow as shown in figure 3 (dotted curve). With a peak velocity uomax = 85.1 cm/s of 
such a pulsatile flow (T= 260s) the stroke volume remains unchanged 
( V  = 5 1 min-l) using the same valve as in the preceding sections. 

The agreement is only moderate. However, one should bear in mind that the 
experimental data contain some uncertainties too ; for instance, in the experiment 
the edges of the cusps are invisible for h > 1. 
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FIQURE 5. Time-dependent aortic-valve motion: 0, data obtained from the Bellhouse & Talbot 
(1969) experiment; -, motion computed by the present theoretical model (pulsatile flow with 
parabolic velocity variation as in figure 3, T = 260 ms) ; - - - - -, result of the same model but with 
a delayed starting time. 
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FIGURE 6. Time-dependent aortic-valve motion, a comparison with the results of other authors 
(pulsatile flow with parabolic velocity variation aa in figure 3, T = 260 ms) : -, present theoretical 
model ; -, Lee & Talbot (1979) ; ---, van Steenhoven & van Dongen (1979) ; * * * * . , Peskin (1982). 

The broken curve in figure 5 represents the same theoretical result, but the starting 
time t,  is somewhat delayed (t,/T = 0.05); the agreement with experimental data is 
slightly better. At the very beginning of valve opening the cusps in a natural valve 
are bulged forward, but the valve remains closed for this short time interval, only 
thereafter do the cusps move rapidly to their fully open position, offering no resistance 
to forward flow. That of course is not true for the model valve, the cusps of which 
are rigid and move forward immediately when ejection begins. 
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In  the case of a valve opening with a delayed starting time the initial conditions 
h = 0, d2A/dt2 = 0 at t = t, have been used instead of (23). 

A comparison with the theoretical results of other authors is shown in figure 6. The 
heavy solid curve again represents the valve motion computed by the present theory 
in the case of an orifice flow u,(t) having a parabolic variation with time. The thin 
solid curve shows the result of Lee k Talbot (1979) using the assumption 
p,(x,  t )  = pi(xL,  t )  for the pressure at the sinus side of the cusp; this corresponds to 
the case m+oo in the present model, i.e. an unlimited sinus of Valsalva. These authors 
compute the valve motion with a delayed starting time t,  in order to improve the 
agreement with experimental data; however, this is not justified for a model with 
rigid cusps. 

The two other curves are the results of integrating the equations obtained by van 
Steenhoven & van Dongen (1979) (dotted curve) and Peskin (1982) (broken curve); 
see table 2. 

7. Concluding remarks 
The one-dimensionality of the valve model used in the present paper prohibits the 

formation of a trapped vortex in the aortic sinuses. Nevertheless, a correctly 
functioning closure can be computed in accordance with experimental data. Obviously 
such a vortex - appearing in the physiological valve - does not play an essential role 
in controlling the closure of the valve. The flow deceleration is solely responsible for 
valve closure. 

This, of course, does not mean there is no vortex acting on the cusp. Even in this 
one-dimensional model there is still a ‘hidden’ vortex (Peskin 1982) - a vortex sheet 
localized on the valve leaflet due to the different tangential velocities on the two sides 
of the leaflet. 

The trapped vortices in the sinuses may be unimportant for the closing of the valve, 
but they are not unnecessary; rather they have other important functions, such as 
preventing projection of the cusps too far into the sinus cavities and protecting the 
ostia of the coronary arteries from being occluded; at peak systole the cusps are 
possibly balanced between the sinus vortex and the aortic flow. In addition, sinus 
vortices may prevent stagnation of blood and thrombus deposition behind the cusps. 

The author would particularly like to thank Dr G. Gross for his considerable 
assistance in carrying out the numerical integrations of (22a,b). He is also deeply 
indebted to his late colleague Professor E. Becker, with whom he had several very 
helpful discussions on the topic of this paper. 
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